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Abstract

Identifiability of linear, time-invariant systems in physical coordinates is discussed

in this paper. It is shown that identification of the system matrix in physical coordinates

can be accomplished by determining a transformation matrix that relates the physical

locations of actuators and sensors to the test-data-derived input and output matrices.

For systems with symmetric matrices, the solution of a constrained optimization problem

is used to characterize all the possible solutions of the transformation matrix. Conditions

for the existence of a unique transformation matrix are established easily from the explicit

form of the solutions. For systems with limited inputs and outputs, the question about

which part of the system can be uniquely identified is also answered. A simple mass-

spring system is used to verify the conclusions of this study.

Introduction

Modal updating has gained some research interest largely because the finite-element

models of structural systems are usually not accurate enough for dynamic simulation and

control design purposes. Most modal updating techniques were developed with the goal

of using experimental data to improve the accuracy of finite-element models. Attempts

include using constrained parameter optimization, nonlinear dynamic programming, and

complicated iterative schemes to update the finite-element model so that it will "fit" a
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given large set of test data. Similar conceptsalso have been used to develop damage

detection techniques. The goal aims for "updating" a mathematical model of the un-

damaged structure by using experimental data of the damaged structure and then, using

the results to detect the locations of damaged structure elements. However, uniqueness

of the solution has not been seriously investigated. If the uniqueness question is not

answered, one will never be able to settle the dispute about whether model updating and

damage detection techniques will really work in practical situations or not.

This paper discusses identifiability of linear, time invariant systems with a limited

number of inputs and outputs. The main conclusion is that if there are not enough

actuators and sensors, the system model in physical coordinates can not be uniquely

determined. Consequently, all existing damage detection techniques, no matter how

sophisticated, can never exactly predict the locations of damaged parts of a structure. It

is also pointed out in this paper that by knowing the physical locations of the actuators

and sensors, it is possible to exactly identify a part of the physical-coordinates model.

Therefore, if one's purpose is to update a physical model of the structure, it is important

to place actuators and sensors at the right locations.

The organization of this paper is as follows. First, the identification problem con-

sidered here is described by a statement of the problem. It shows that the identification of

system matrix can be accomplished by determining a transformation matrix. Then, iden-

tifiability of systems with unsymmetric matrices is discussed. After that, a constrained

optimization problem is solved with the results to be used in the discussion of identifi-

ability of systems with symmetric matrices. The conclusions of this study are basically

the same as those of Ref. [1]. However, here we explicitly solve for all the possible solu-

tions of the transformation matrix. Therefore, conditions for the existence of a unique

transformation matrix can be established very easily from the form of the solution. The

question about which part of the system is exactly identified is also answered. A simple

numerical example is included.



Statement of Problem

The system identification problem considered here is described as follows: Given

an input-output transfer function matrix G(s) E R ''×t (derived from test data) and an

input matrix B E R TM and an output matrix C E R ''×n (derived from physical locations

of actuators and sensors), determine a matrix A E R _×" such that

C(sl-A)-IB=G(s) (1)

We are interested in the uniqueness of the solution. If A is uniquely determined, then it

represents the system matrix in physical coordinates. For model updating and structural

redesign purposes, it is important to assure that the system matrix identified is indeed

in physical coordinates.

For a given transfer function, there is no unique state-space representation. Ex-

isting system realization techniques can find at least one state-space representation

(A,B,C) that also satisfies G(s) = C(sI- fi.)-IB. Since the two triples (A,B,C)

and (A, B, C) describe the same system, they are related by a similarity transformation

= p-lAp

B=P-XB (2)

C=CP

P E/_×'_ is called the transformation matrix. Therefore, identification of the A matrix

in physical coordinates can be accomplished by determining the transformation matrix

P, which relates the physical-coordinates model (A, B, C) to a given test-data-derived

model (A, B, C).

In the following sections, we will show that the transformation matrix is generally

not unique if there is not enough sensors and actuators. Identification of first-order

systems with unsymmetric system matrices will be discussed first. Then, a constrained

optimization problem will be solved along with uniqueness of the solution studied. The

results are used to discuss identifiability of symmetric system matrices and mass and

stiffness matrices of structural dynamics systems.



Identification of Unsymmetric System matrix

For general linear systems with unsyrnmetric system matrices, the transformation

matrix can be determined from solving Eqs. (25) and (2c), which are rewritten as

B= PB

0 =CP (3)

Let the singular value decompositions (SVD) of/3 and C be

[_= u,_s,_v[ , c = uosc vZ (4)

Then, by premultiplying and postmultiplying Eqs. (3) by appropriate matrices and by us-

ing the orthogonality property of singular value decompositions, Eq. (3) can be rewritten

as

VTBVB = vTpuBEB

u$Ou_ = ScVcrPV_

Define a new matrix/5 - vTpuD, then the above equations become

VJBVB = Pp_

urcOuB= _cP

(5)

(6)

Therefore, determination of P can be accomplished from determining t5.

Let P matrix be partitioned into

/5=[ /511 /512] PriER m×t , P12ERmxin-0/521 /522 /521 • R (n-rn)×l , /522 • R(n-rn)×(n-I) (7)

Since /3 • R =xz and is a full-rank matrix, P has l nonzero singular values. That is,

EB=[ [(_i)B]]0 ' where[(ai)B]isanlxldiag°nalmatrixwithn°nzer°singularvalues

on the diagonal. Therefore, Eq. (6a) uniquely determines the first l columns of 15 matrix.

That is,

1
P21 J ---- VTBV]_[((Ti)B]-I (8)

Similarly, because C matrix has m nonzero singular values, Eq. (6b) uniquely determines

the first m rows of/5 matrix. That is

[ p,, ] = (9)



There is only one partition, that is P22, that does not appear in the solutions, Eq. (8)

and Eq. (9). If l > n and rank(/_) = n, which implies the case that the number of

actuators is greater than or equal to the number of states, then EB is a full rank matrix,

and hence, Eq. (6a) uniquely determines P. Similarly, if m > n and rank(C) = n, then

Eq. (6b) uniquely determines/5. If both l and m are less than n, then the solution of P

is non-unique, because P_2 is undetermined.

Therefore, the necessary and sufficient condition for the transformation matrix P

to be uniquely determined is that either rank(/3)=n or rank(C)=n. In other words, there

must be at least as many sensors or as many actuators as the order of the system so that

the A matrix can be uniquely identified. Also note that/511 is determined twice in Eqs. (8)

and (9). The Pxl determined from Eqs. (8) and (9) can be expressed, respectively, by

Pn = VT1BVD[(a,)_] -I , Pn = [(ai)c]-'uTcu_I (10)

where vT1 is the first rn rows of VeT and UB1 is the first I columns of UB. The above two

solutions of/511 must be equal for consistency. In fact,

V£ BV [ ]-1 = [ ]-IV eV l [ lV£ BVB= Vg V l[ ]

]Vj1BVBV/ = UcU[. U I[ CB=CBVc[ r r

The condition that CB = CB must be satisfied if (A, B, C) and (A, B, C) indeed repre-

sent the same system. Therefore, if the two solution of/511 in Eq. (10) are not consistent,

then the given test-data-derived model (A, B, C) is a wrong model.

Before we move on to discuss identification of systems with symmetric matrix, let us

study the solution of a constrained optimization problem. Non-uniqueness of the solution

of this optimization problem will prove to be useful in the discussion of identifiability of

symmetric system matrices.

A Constrained Optimization Problem

The constrained optimization problem considered is: Given two matrices Q and

R, both E R p×'_ and of ranks _< n (p can be > or < n), and a positive-definite symmetric

matrix M E R "×', find all P E/_×" that
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minimize J --II Q- RP
(11)

subject to pT M p = In

This optimization problem explores the possibility of "rotating" R into Q through a

transformation matrix P which is orthonormal with respect to M. This optimization

problem is also closely related to the following constrained algebraic problem:

Q-RP=O

pTMp = I_ (12)

We will show later that identification of linear systems with symmetric matrices can be

formulated as solving the above constrained algebraic equations. Because [[ Q-RP [[_> 0

for all P and equality holds only when Q - RP = 0, the smallest possible minimum value

of J is 0. Therefore, every P that satisfies Eq. (12) is also a solution of the optimization

problem in Eq. (11).

The derivation for a solution of the constrained optimization problem in Eq. (11)

follows the derivation in Ref. [2] for a similar constrained optimization problem. First, J

can be rewritten as

J = trace(QTQ) + trace(P TR TRP) -- 2trace(P TRTQ) (13)

Note that if P satisfies the constrained condition pTMp = In, then pTM½M½P = In

1 1

and so, M_ppTM_ = In. The second term in the Eq. (13) can be converted to a form

that is independent of P.

trace( pT RT Rp ) T 1-- trace(P M_M-½RTRM-½M½P)

1 1 1 1

= trace(M-_RTRM-_M_pp:rM_)

1 1

= trace(M- _ RTRM - _ )

Therefore, from Eq. (13) it is seen that minimizing J is equivalent to maximizing

trace(pTRTQ). The maximizing P can be obtained by using the singular value de-

1 T
composition technique. Let the SVD of M-_R Q be

M-½ RT Q = U_V T
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Sinceboth rank(Q) and rank(R) are _<n, the rank of RTQ is also <_ n. Assume RTQ

has r nonzero singular values (r < n and r is not necessarily equal to p) and arrange the

decomposition such that

E=diag(al,...,ar,O,...) , ai>O

Define an S matrix by

S T -- vTpTM½U

The constrained condition pTMp = In implies that S is orthogonal, i.e., sTs -- In.

Then,
?.

trace(P TRTQ) = trace( P T M½ U2V T) = trace(STY],) -- _, si, a,
i=1

in which sii, i = 1,... ,p, are diagonal elements of S. Because S is an orthogonal matrix,
$*

sii < 1. Therefore, the maximum value of trace(pTRTQ) is _ cri, which is attained by
i=1

setting

S= [ I_0 Sb0 ] with sTsb = In__ (14)

The above derivation shows that the solution of the constrained optimization prob-

lem in Eq. (11) can be expressed by

1 T
P = M-rUSV (15)

1 T
where S is given by Eq. (14) and U and V are SVD of M-_R Q. Obviously, if r < n,

then the solution is non-unique because every S matrix in the form of Eq. (14) yields

a minimum. Therefore, Eq. (15) represents a "solution group", which includes all the

possible solutions. Although every P in the solution group minimizes J, there is only

one minimum value of J, that is

T

Jmin = trace(QTQ) + trace(M-½RTRM ½) - 2 y_ ai
i=1

The solution group given in Eq. (15) is also the solution of the constrained algebraic

problem in Eq. (12). This statement is deduced from the following arguments. As men-

tioned previously, if there exists a P that satisfies Eq. (12), then it must be a solution of
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the optimization problem in Eq. (11) becauseJ =[1 Q-RP I[_> 0 for all P with equality

holds only when Q - RP = 0. All the solutions of the optimization problem are included

by Eq. (15). If the constrained algebraic problem has any solution at all, the solution

must also be included by Eq. (15). Since every solution in the solution group produces

the same minimum, if one solution yields Jmi, = 0, then every solution in the solution

group yields Jmin = 0. In other words, the constrained algebraic problem in Eq. (12)

either has no solution or has the solution given by Eq. (15). When the constrained al-

gebraic problem has solution, the solution is unique if and only if rank(RTQ)=n, which

implies rank(Q)=rank(R)=n. In the following sections, we will use this conclusion to

discuss identifiability of systems with symmetric matrices.

Identification of Symmetric System Matrix

A linear system with symmetric system matrix has real eigenvalues and a set of

orthogonal, real eigenvectors. By using eigenvalue decomposition, any given test-data-

derived model (A, B, C) can be transformed into the modal coordinates representation

(A, B, C), where A E /_×'_ is a diagonal matrix with system eigenvalues (or poles) on

the diagonal. Therefore, identification of A matrix in physical coordinates can be accom-

plished from finding the transformation matrix that relates the modal-coordinates model

and the physical-coordinates model. The modal-coordinates model and the physical-

coordinates model are related by the following congruence transformation

A=pTAp , B=pTB , C=CP (16)

where P is called the modal matrix and satisfies pTp = I,.

From the last two equations in Eq. (16), it is seen that the modal matrix P can

be determined from solving the following constrained algebraic problem

[_T B T

(17)

pTp = In
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If P is uniquely determined, then the identification of A is accomplished by setting

A = PAP T. From the results derived in the previous section, P is unique if and only if

both C' and C have rank equal to n. In other words, if the number of actuators

plus the number of sensors is less than the number of the states, then the system matrix

in physical coordinates is not identifiable.

Identification of Undamped Structural Dynamics Systems

Now, we will discuss identifiability of undamped structural dynamics systems with

symmetric mass and damping matrices. Assume the testing environment is perfectly

noise free. Then, the test data of an undamped structural dynamics system can be

realized by the following modal model

+Ft2r/=Fu r/ER '_, uER t

y = ¢d_ + _'v_ + _o¢/ y e R _ (is)

where f_2 = diag [w_] and wi are system's natural frequencies. In physical coordinates,

the system equation is described by

M_c + Kx = Fu

y = Cdz + Cjc + C._

x E R", u E R t

yeR" (19)

It is assumed that physical location of actuators and sensors are given. That is, matrices

F, Cd, C,,, and C_ are known. We are interested in identifying M and K in physical

coordinates from using the given modal model in Eq. (18) and the given physical locations

of actuators and sensors.

These modal-coordinates model and the physical-coordinates model are related by

a modal matrix P such that

pT M P = In , pT K p = _2

F = pTF , Ca = CdP , C,, = C,_P , C_, = C,,P

First, consider the case when the mass matrix M is given. Then, the transformation
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matrix P can be determined from solving the following constrained algebraic problem:

_T

G

F T

Ca
Cv

G

P

(20)

pTMp = In

If P is uniquely determined, then the physical stiffness matrix is determined from setting

K = p-T_2p-1. Previous discussion shows that the total number of actuators and

sensors must be at least equal to the number of degrees-of-freedom of the system in order

for the modal matrix to be uniquely determined.

For the case that both M and K are unknown, the only equation available for

determining P is
_T F T

cd cd
G = G P (21)

which is an unconstrained algebraic equation. After P is obtained, M and K can be

calculated by

M- p-Tp-1 , K = p-T_2p-1

In order for a unique P to exist, the matrix formed by the input and output matrices

must be consistent and must have rank n. Therefore, the knowledge about M does not

relieve the number requirement of actuators and sensors.

Which Part of the System is Uniquely and Exactly Identified?

We have shown that if the number of actuators and sensors are not enough, then

it is never possible to identify the physical system matrices uniquely. Nevertheless, it

is still of interest to know if it's possible to uniquely identify certain part of the system

matrices by using the knowledge about physical locations of actuators and sensors.

First, consider the case with unsymmetric system matrices. The physical-coordinates

model (A, B, C) and the test-d_ta-derived model (A, B, C) are related by a transforma-

tion matrix P as shown in Eq. (2). The transformation matrix P is determined from
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solving Eqs. (2b) and (2c). Previous results showsthat unlesseither rank(B)=n or

rank(C)-n, P can not be uniquely determined. Now, assume there is only one sensor

and it is located at the i-th physical coordinate. In this case, C - ei, where ei the i-th

row of the identity matrix In. Then, the relation G' = CP = eiP uniquely determines

the i-th row of P matrix. Similarly, if we assume that there is only one actuator and it is

located at the j-th physical coordinate, then the relation B = P-aB - P-leT uniquely

determines the j-th column of p-1. With the i-th row of P and the j-th column of p-1

being uniquely determined, the (i,j)-th element of A matrix is also uniquely determined,

since A = pap-1.

For systems with symmetric matrices, the test data acquired in a noise-free envi-

ronment can be realized by a modal model (A, B, C). The physical-coordinates model

(A, B, C) and the modal-coordinates model (h, B, C) are related by a modal matrix P

as shown in Eq. (16). Because p-1 __ pT, either a sensor or an actuator suffices to

determine one row of the modal matrix uniquely. A pair of noncolocated sensor and

actuator can identify two rows of the modal matrix, and therefore, four elements of the

system matrix.

In summary, from knowing the physical locations of actuators and sensors, it is

possible to identify part of the system matrix in physical coordinates. However, this

conclusion is based on the assumption that the testing environment is noise free. In

practical situations, the test data are inevitably contaminated by noises and small errors.

Sensitivity of the identification results to noises is another topic worthy of studying.

A Simple Example

As an example we will consider the simple mass-spring system shown in Fig. 1.

There is a displacement sensor and a force actuator located at DOF2 and DOF3, denoted

by s and a, respectively. The modal model of this system is given by

_}+ 0

0
o.27080oI {o.4319}2.1315 0 r/= -0.5524 u

0 5.8477 0.0917

y = [ 0.3539 0.2325 -0.2659 ]7/
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Assume that the mass matrix
200

M= 040

002

is given. And, we want to determine the physical stiffness matrix K.

The modal matrix P is determined by solving the following constrained algebraic

problem:

Or,

[ 0.4319--0.5524 0.0917 ]_ [ 0 0 1 ] p pTMp _ i 30.3539 0.2325 -0.2659 0 1 0 '

Q = RP , pTMp = I3

1 T
Singular value decompositions of M-_R Q(= USV) shows that there are two nonzero

singular values, while the system has three degrees-of-freedom. Therefore, the solution

1 T
is not unique. The solution group is given by P = M-_USV for all S that satisfy

1 0 0

S= OlO , S =l
OO&

There are two solutions: Sb -- 1 and Sb = -1. Therefore, there are two modal matrix

that are solutions of the constrained algebraic problem. They are:

0.2510 0.2945 0.5918 -0.2510 -0.2945 -0.5918

P1 = 0.3539 0.2325 -0.2659 , P2 = 0.3539 0.2325 -0.2659

0.4319 -0.5524 0.0917 0.4319 -0.5524 0.0917

Using these two modal matrices to determine the stiffness matrix, we get

9 -6 0 9 6 0

K1 = -6 9 -3 , Ks= 6 9 -3

0 -3 3 0 -3 3

%

%

%

%

%

%

%

k=3 m-2 k=6 m--4 k=3 m=2

Figure 1: A three degrees-of-freedom mass-spring system.
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in which K1 is the correct stiffness matrix in physical coordinates. K2 is not the correct

stiffness matrix, but the (2,2), (2,3), (3,2), and (3,3) elements are correct. This is because

that there is an actuator located at DOF3 and a sensor located at DOF2.

This example shows that with only one actuator and one sensor (non-colocated),

the physical stiffness matrix of the three degrees-of-freedom mass-spring system can not

be uniquely identified from the given modal model and the given physical locations of

actuator and sensor. However, those elements in the stiffness matrix corresponding to

the actuator and sensor locations are exactly and uniquely determined

Concluding Remarks

Identifiability of linear, time invariant systems from test data with a limited num-

ber of actuators and sensors is investigated in this paper. It is shown that for systems

with unsymmetric system matrices, either the number of actuators or the number of sen-

sors must be greater than or equal to the number of states so that the system matrices

in physical coordinates can be uniquely identified. For systems with symmetric system

matrices, the number of actuators plus the number of sensors must be greater than or

equal to the number of states in order for the physical system matrices to be uniquely

determined. For undamped structural dynamics systems with symmetric mass and stiff-

ness matrices, the total number of actuators and sensors must be greater than or equal

to the number of degrees-of-freedom, so that the physical mass and stiffness matrices can

be identified from test data. A simple mass-spring system is used as an example to verify

the conclusions.
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